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Bidirectional Transformers

Generative Pretrained 
Transformers

Robustly Optimized 
BERTransformers 
Pretraining Approch



Transformers

Vaswani, A., Shazeer, N., 
Parmar, N., Uszkoreit, J.,
 Jones, L., Gomez, A. N., ... & 
Polosukhin, I. (2017). Attention 
is all you need. Advances in neural 
information processing systems, 30.



Transformers

Self-Attention

Deep Learning

Neural Networks



Transformers

Self-Attention

Deep Learning

Neural Networks

● multi-headed attention
● positional embeddings
● residual links

     (to be introduced later)



Part 1: Deep Learning and Masked Language Models
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Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

How did we do this?



But, how do we model complex systems using these linear systems?



Deep Learning

But, how do we model complex systems using these linear systems?



Deep Learning

Non-linear functions + Artificial Neural Networks



Activation Functions
z = h(t)W



Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)
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Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

     (matmul)           f, g
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Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

ht = g(ht-1 U + xtV)

short hand for vector/ matrix multiply



Neural Networks: Graphs of Operations
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(Jurafsky, 2019)

“hidden layer”
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Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)



Spark OverviewBack Propagation
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(Li et al. ,2015; Jurafsky et al., 2019)



To embed: convert a token (or sequence) to a vector that represents meaning. 

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different 
contexts it appears in (i.e. how it is “distributed” in natural language). 

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

Word Vectors



Person A Person B
How are you? I feel fine –even great!  My life is a great mess! I’m 

having a very hard time being 
happy.

What is going on? Earlier, I played the game 
Yahtzee with my partner. I  
could not get that die to roll 
a 1! Now I’m lying on my 
bed for a rest.

My business partner was lying 
to me. He was trying to game 
the system and played me. I 
think I am going to die –he left 
and now I have to pay the rest 
of his fine. 

(Kjell, Kjell, and Schwartz, 2023)

Word Vectors
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great.a.2, outstanding (of major significance 
or importance)

great.a.3 (remarkable or out of the ordinary 
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy, 
great.a.4, groovy, keen, neat, nifty, not bad, 
peachy, slap-up, swell, smashing, old (very 
good) 

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6, 
large, heavy, with child (in an advanced 
stage of pregnancy)

great.n.1 (a person who has achieved 
distinction and honor in some field)

?

Objective
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Masked 
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given history)

P(with | He ate the cake <M> the fork) = ?

     with   yummy  using     and     by   without

Sequence
(He, at, the, cake,<MASK>, 
the, fork)

Neural
Network

What is the masked 
word in the sequence?



Masked Language Modelling with DNN

He ate the cake <MASK> the fork
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Masked Language Modelling with DNN
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P(<MASK>| context)

…

     with   yummy  using     and     by   without



Masked Language Modelling with ANN

He ate the cake <MASK> the fork

P(<MASK>| context)

…

The final layer produces a 
<MASK>  distribution 
over the vocabulary, 
representing the likely 
words to fill in the 
MASK-ed token



Masked Language Modelling with DNN

He ate the cake <MASK> the fork

SOFTMAX

…

The final layer produces a 
probability  distribution 
over the vocabulary, 
representing the likely 
words to fill in the 
MASK-ed token



Masked Language Modelling with DNN
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Masked Language Modelling with DNN

f f f f f f f

He ate the cake <MASK> the fork

f f f f f f f

f f f f f f f

P(<MASK>| context)

…

Limitations:
1. Can’t handle order
2. Can’t handle variable 

length sequences
3. Each parameter to 

specific to the input 
feature (token)



Masked Language modeling 
with an RNN

Recurrent Neural Network



Example: Forward Pass

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i) 

= f(V h
(i)

) #update output

(Geron, 2017)



Example: Forward Pass 

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i) 

= softmax(matmul(V, h
(i)

)) #update output



Masked Language Modelling with Recurrent 
Network

He ate the cake <MASK> the fork

P(<MASK>| context)



Vanishing/exploding gradients (Computational graph)

GRU and LSTM cells solve. 



The horse which was raced past the barn tripped . 

RNN Limitation: 
Losing Track of Long Distance Dependencies



Language modeling 
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 … 



Next Lecture

- Deep dive into Self Attention (Vaswani et al., 2017)
- Masked Language Modelling using Transformers (Devlin et al., 2019)



Part 2: Transformer and Self-attention

Nikita Soni
nisoni@cs.stonybrook.edu

CSE538 - Spring 2024



● Difficult to capture long-distance dependencies

● Not parallelizable -- need sequential processing.

○ Slow computation for long sequences

● Vanishing or exploding gradients

Recap: RNN Limitations
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● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation
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Encoder-Decoder (Simpler Representation)

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Softmax

Language 1: (e.g. Chinese)

Language 2: (e.g. English)



Encoder-Decoder

Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

Kayla kicked the ball. 

The ball was kicked by kayla.

Softmax



Encoder-Decoder

Challenge: 

● Long distance dependency when translating:

<go>                    y(0)                            y(1)                          y(2)                ….

      y(0)                            y(1)                          y(2)                  y(3)                         y(4)

A lot of responsibility put fixed-size hidden 
state passed from encoder to decoderKayla kicked the ball. 

The ball was kicked by kayla.

Softmax



Encoder



Encoder: Input Embedding



Input Embedding 

Original Sentence

Tokenization

Input IDs
(embedding lookup: position in the vocab - 
FIXED)

Embeddings
(vector of size dmodel= 512 or 1024 or …
LEARNED)



Encoder: Positional Encoding



Positional Encoding

Original Sentence
(tokens)

Embeddings
(vector of size dmodel= 512 or 1024 or …
Learned)

Positional Embedding
(vector of size dmodel= 512 or 1024 or …
Can be Learned or FIxed)



Positional Encoding



Encoder: Multi-Head Attention



…

…

…

…

The Transformer's Heart: Self-Attention

yi-1      yi                yi+1 yi+2

hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2



… …

The Transformer's Heart: Self-Attention

yi-1      yi                yi+1 yi+2

hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

Attend to all other words in 
the sequence

The Transformer's Heart: Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2I'm feeling very      elated.

yi-1      yi                yi+1 yi+2

Attend to all other words in 
the sequence

The Transformer's Heart: Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

A weighted combination of 
other words' vectors. 

I'm feeling very      elated.

The Transformer's Heart: Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

The Transformer's Heart: Self-Attention

wi-1      wi                wi+1 wi+2                ….



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2

yi-1      yi                yi+1 yi+2

I'm feeling very      elated.

The Transformer's Heart: Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

The Transformer's Heart: Self-Attention



Output

α

𝜓

h
hi-1      hi                hi+1
hi+2wi-1      wi                wi+1 wi+2

yi-1      yi                yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling 
parameter

(qkt) σ(q,k)

The Transformer's Heart: Self-Attention



Notations for Self-Attention (Matrix multiplication, Dot 
Product, Sequence length (s), embedding dimensions)

Input matrix: [s, dmodel]



Self-Attention



Limitation (thus far): Can’t capture multiple types of dependencies between words. 

The Transformer: Beyond Self-Attention



Solution: Multi-head attention

The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words. 



Self-Attention: Weights



Multi-Headed Attention



Multi-Headed Attention

Linear layer:
WTX

One set of weights for 
each of K, Q, and V



The Transformer: Multi-headed Attention



Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights 
for each of K, Q, 
and V
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Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights 
for each of for K, 
Q, and V



Decoder



Decoder: Cross Attention



Decoder: Masked Multi-Head Attention



Masked Multi-Head Attention



Training

I love hiking. [English]

Adoro le escursioni. [Italian]



Training



My life is a great messsentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Transformer Language Models:  Uses multiple layers of a transformer



Auto-encoder (MLM): 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)



Auto-encoder (MLM): 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator): 
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning



Auto-encoder (MLM): 
● Connections go both directions. 
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator): 
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

…

…

…

…

…

…

…

…



Detailed Overview of (HuggingFace) Transformer Matrices and Computation
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Detailed Overview of (HuggingFace) Transformer Matrices and Computation
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Detailed Overview of (HuggingFace) Transformer Matrices and Computation



Detailed Overview of (HuggingFace) Transformer Matrices and Computation



Hugging Face or AllenNLP

https://github.com/huggingface/transformers 

https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/ 

#example for getting embeddings

from transformers import BertModel, PreTrainedTokenizerFast, pipeline

bert_tokenizer = PreTrainedTokenizerFast.from_pretrained('google-bert/bert-base-uncased')

bert_model = BertModel.from_pretrained('google-bert/bert-base-uncased')

pipe = pipeline('feature-extraction', model=bert_model, tokenizer=bert_tokenizer)

emb = pipe(text)

print(emb[0][0])

https://github.com/huggingface/transformers
https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/


Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores: 



Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/


Large Transformer Language Model

Classifier

Assistant, 
QA 

Machine 
Translation

Web 
Search

Document 
Classification

Sentiment
Analysis …

absolutamente 
me gustaría ir 
de excursión

(NLP System)

Language

Soni, N., Matero, M., 
Balasubramanian, N., & 
Schwartz, H. (2022, May). 
Human Language Modeling. In 
Findings of the Association for 
Computational Linguistics: ACL 
2022 (pp. 622-636).

Transformers as of 2023



Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8


BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions. 

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix 
multiplications + standardizing. 

The Transformer: Take Away



Part 3: Applying Transformer LMs 

Foundational Applied



Applying Transformer LMs 

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Supervised ML
Features

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity
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Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity

AE

Applying Transformer LMs 

AEAR

modifies LM weights



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training CorpusNew Continued Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus
Task Prompts 

e.g. What topic is this about?  "Last night, the 
        Seawolves won the game." answer: sports
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sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Task Fine-Tuning

softmax for LM:

Large Training Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

optional layer(s) for task:

Task Fine-Tuning

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus
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Foundational Applied
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Instruction Tuning

Fine-Tuning the LM
(continued pretraining)
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Retrieval-Augmented 
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/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML 
or Similarity

AE

Applying Transformer LMs 

contextual embeddings
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sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

linear, FFN, CNN, Random Forest, 
or Any ML Model

Contextual Embeddings: for Supervised ML

equivalent to task fine-tuning but with all 
frozen layers



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

Similarity?
classifier or regressor:

(e.g. sentiment, topic classification, etc.)

Large Training Corpus

Optional Aggregation

Contextual Embeddings: for Similarity (unsup)

equivalent to task fine-tuning but with all 
frozen layers

Embedding Comparison 
Embedding



modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML 
or Similarity

AE

Applying Transformer LMs 

contextual embeddings

AR

AR



AR

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

Unsupervised ML 
or Similarity

AE

contextual embeddings

AR

injects history no change or history

Applying Transformer LMs 



sentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

layer k: 
(used for language modeling)

RAG, Few-Shot, Zero-Shot

softmax for LM:

Large Training Corpus
Task Prompts 

e.g. What topic is this about?  "Last night, the 
        Seawolves won the game." answer: sports

No training! 
The model is frozen

Zero shot = Prompt has no examples, just 
prompting directly for the task, without answer. 

Few shot = Prompt has a few examples of the task 
with answer, then prompting for the task without 
answer. 

RAG = Using other NLP techniques to retrieve 
relevant information to include in the prompt 
(retrieval approach can use other models). 

Answer(s)



Applying Transformer LMs 

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML 
or Similarity

AE

AR

AR

AR



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs) 

               #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

Problem: 

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>')
=.20

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs) 

               #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

<s>

</s>
</s>

</s>
</s>

</s>
</s>



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

  else: 
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((path+w, path_p*p))
  return max_path, max_path_p

  



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

  else: 
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
  return max_path, max_path_p

  





How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among 
multiple sequences. 

Restrict to consider 
the top k (beam 
width) most probable 
per step. 

def generateBeam(model, history='<s>', init_prob=1, k=4):
  frontier = [(history, init_prob)] 
  max_path = []
  max_path_p = -1.0
    while path, path_p in frontier:
      if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

  else: 
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
  return max_path, max_path_p

  

Disadvantage: Focuses on the 
most probable, which is the 
most typical. Results in very 

"average sounding" utterances. 



How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

def generateRandWalk(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
           #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

     with   yummy  using     and     by   without



How to use an LM for Generation

Practical Points

● Use log probs for faster computation tracking maximums. 

● Can normalize by length to not favor shorter sequences: 

● Combine beam and random walk for more novelty. 



Supplemental Review Material



Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding
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Auto-Encoding
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Auto-Regressive

Auto-Encoding
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Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?



Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Computational Graph!



Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square L

L = (y - 𝛽x)2



Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU



Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

import torch
from torch import nn 

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, torch.Tensor(y))



Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

Spark OverviewPyTorch Demo 

https://adithya8.github.io/assets/cse545-sp23/intro_pytorch_linear_regression.txt
https://adithya8.github.io/assets/cse545-sp23/intro_nn_linear_regression.txt
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Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by 
equating it to 0

𝛽opt  = (XTX)-1XTy

Linear Regression
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2. Numerical Gradient: Start at a random point and move in the direction of 
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How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by 
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Linear Regression: Trying to find “betas” that minimize: 

Spark OverviewNumerical Gradient Approach

β* = argminβ {∑i(yi - ŷi)
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

Spark OverviewNumerical Gradient Approach

matrix multiply

ŷi = Xiβ

β* = argminβ {∑i(yi - ŷi)
2}

β* = argminβ {∑i(yi - Xiβ)2}



Linear Regression: Trying to find “betas” that minimize: 

Thus: 
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Spark OverviewNumerical Gradient Approach

matrix multiply
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Linear Regression: Trying to find “betas” that minimize: 

Thus: 

How to update? 

Spark OverviewNumerical Gradient Approach

matrix multiply

ŷi = Xiβ

β* = argminβ {∑i(yi - ŷi)
2}

β* = argminβ {∑i(yi - Xiβ)2}

βnew = βold - 𝞪 * grad

𝞪: Learning Rate



Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 

Spark OverviewNumerical Gradient Approach

βnew = βold - 𝞪 * grad



Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

βnew = βold - 𝞪 * grad



Linear Regression: Trying to find “betas” that minimize: 

Gradient Descent: 

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

Animation: Alec Radford

βnew = βold - 𝞪 * grad



simpler version

Foundational Change
(modifies the LM weights)

Applied
(no change to LM)

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented 
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Embeddings



My life is a great joysentence (sequence) input:

…

layer 0: 
(input: word-type embeddings)

layer k-1: 
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with 

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k: 
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:



Pre-training; Fine-tuning the LM; Instruction Tuning

(multiple layers: e.g. 6, 12, or 24)



BERT: Pre-training; Fine-tuning

12 or 24 layers



BERT: Pre-training -> Task Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)



BERT: Pre-training -> LM Fine-tuning

12 or 24 layers

New Corpus



Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive


