
Transformer Language
Models

…

…

…

…

…

…

CSE538 - Spring 2024

Timeline: Language Modeling and Vector Semantics

GPT4

RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Timeline: Language Modeling and Vector Semantics

GPT4

2018

2010

2003

1948

1980

~logarithmic scale

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

RoBERTA

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Bidirectional Transformers

Generative Pretrained
Transformers

Robustly Optimized
BERTransformers
Pretraining Approch

Transformers

Vaswani, A., Shazeer, N.,
Parmar, N., Uszkoreit, J.,
 Jones, L., Gomez, A. N., ... &
Polosukhin, I. (2017). Attention
is all you need. Advances in neural
information processing systems, 30.

Transformers

Self-Attention

Deep Learning

Neural Networks

Transformers

Self-Attention

Deep Learning

Neural Networks

● multi-headed attention
● positional embeddings
● residual links

 (to be introduced later)

Part 1: Deep Learning and Masked Language Models

Adithya V Ganesan

CSE538 - Spring 2024
bit.ly/cse538-sp24-lecture7

Artificial Neural Networks

What is it?

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

How did we do this?

But, how do we model complex systems using these linear systems?

Deep Learning

But, how do we model complex systems using these linear systems?

Deep Learning

Non-linear functions + Artificial Neural Networks

Activation Functions
z = h(t)W

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

 (matmul) f, g

(weighted sum)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)W)“hidden layer”

(skymind, AI Wiki)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(x(t)V)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

yt = f(matmul(ht,W))

Activation Function

ht = g(ht-1 U + xtV)

short hand for vector/ matrix multiply

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Spark OverviewBack Propagation

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT4

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Osgood: The
Measurement
of Meaning

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

10
2

18
103

9

(Li et al. ,2015; Jurafsky et al., 2019)

To embed: convert a token (or sequence) to a vector that represents meaning.

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

Word Vectors

Person A Person B
How are you? I feel fine –even great! My life is a great mess! I’m

having a very hard time being
happy.

What is going on? Earlier, I played the game
Yahtzee with my partner. I
could not get that die to roll
a 1! Now I’m lying on my
bed for a rest.

My business partner was lying
to me. He was trying to game
the system and played me. I
think I am going to die –he left
and now I have to pay the rest
of his fine.

(Kjell, Kjell, and Schwartz, 2023)

Word Vectors

great
embed

0.53
1.5
3.21
-2.3
.76

Objective

great
embed

0.53
1.5
3.21
-2.3
.76

great.a.1 (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

?

Objective

great
embed

0.53
1.5
3.21
-2.3
.76

great.a.1 (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

great.n.1 (a person who has achieved
distinction and honor in some field)

?

Objective

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

POS, Chunking (Shallow
Parsing), NER, SRL, Modified

Language Modelling

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3.5

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

word vectors

more neural networks
(capturing context)

Task Probabilities

POS, Chunking (Shallow
Parsing), NER, SRL, Modified

Language Modelling

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors BERT

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

GPT3

ELMO

XLNet
RoBERTA

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given history)

P(with | He ate the cake <M> the fork) = ?

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given history)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given history)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Masked
Language Modeling

Task: Estimate P(wi| w1,…wi-1, wi+1... wn)
:P(masked word given history)

P(with | He ate the cake <M> the fork) = ?

 with yummy using and by without

Sequence
(He, at, the, cake,<MASK>,
the, fork)

Neural
Network

What is the masked
word in the sequence?

Masked Language Modelling with DNN

He ate the cake <MASK> the fork

Masked Language Modelling with DNN

He ate the cake <MASK> the fork

…

Masked Language Modelling with DNN

He ate the cake <MASK> the fork

P(<MASK>| context)

…

Masked Language Modelling with DNN

He ate the cake <MASK> the fork

P(<MASK>| context)

…

 with yummy using and by without

Masked Language Modelling with ANN

He ate the cake <MASK> the fork

P(<MASK>| context)

…

The final layer produces a
<MASK> distribution
over the vocabulary,
representing the likely
words to fill in the
MASK-ed token

Masked Language Modelling with DNN

He ate the cake <MASK> the fork

SOFTMAX

…

The final layer produces a
probability distribution
over the vocabulary,
representing the likely
words to fill in the
MASK-ed token

Masked Language Modelling with DNN

f f f f f f f

He ate the cake <MASK> the fork

f f f f f f f

f f f f f f f

P(<MASK>| context)

…

Masked Language Modelling with DNN

f f f f f f f

He ate the cake <MASK> the fork

f f f f f f f

f f f f f f f

P(<MASK>| context)

…

Limitations:
1. Can’t handle order
2. Can’t handle variable

length sequences
3. Each parameter to

specific to the input
feature (token)

Masked Language modeling
with an RNN

Recurrent Neural Network

Example: Forward Pass

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= g(U h
(i-1)

 + W x
(i)

) #update hidden state

y
(i)

= f(V h
(i)

) #update output

(Geron, 2017)

Example: Forward Pass

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tanh(matmul(U,h
(i-1)

)+ matmul(W,x
(i)

)) #update hidden state

y
(i)

= softmax(matmul(V, h
(i)

)) #update output

Masked Language Modelling with Recurrent
Network

He ate the cake <MASK> the fork

P(<MASK>| context)

Vanishing/exploding gradients (Computational graph)

GRU and LSTM cells solve.

The horse which was raced past the barn tripped .

RNN Limitation:
Losing Track of Long Distance Dependencies

Language modeling
with an RNN

RNN: Limitation: Not parallelizable

step 1 step 2 …

Next Lecture

- Deep dive into Self Attention (Vaswani et al., 2017)
- Masked Language Modelling using Transformers (Devlin et al., 2019)

Part 2: Transformer and Self-attention

Nikita Soni
nisoni@cs.stonybrook.edu

CSE538 - Spring 2024

● Difficult to capture long-distance dependencies

● Not parallelizable -- need sequential processing.

○ Slow computation for long sequences

● Vanishing or exploding gradients

Recap: RNN Limitations

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Timeline: Language Modeling and Vector Semantics

Shannon: A Mathematical Theory of Communication (first digital language model)

BERT

ELMO

GPT

2018

2010

2003

1948

1980

~logarithmic scale

Blei et al.: [LDA Topic Modeling]

Osgood: The
Measurement
of Meaning

Deerwater:
Indexing by Latent
Semantic Analysis
(LSA)

Brown et al.: Class-based ngram models of
 natural language

Switzer: Vector
Space Models

Bengio:
Neural-net
based
embeddings

Mikolov: word2vec

Collobert and
Weston: A unified
architecture for
natural language
processing: Deep
neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

1913 Markov: Probability that next letter would be vowel or consonant.

Language Models
Vector Semantics
LMs + Vectors

GPT4

RoBERTA

These (or similar) are
behind almost all
state-of-the-art
modern NLP systems

Bidirectional Transformers

Generative Pretrained
Transformers

Robustly Optimized
BERTransformers
Pretraining Approch

● Capture long-distance dependencies

● Preserving sequential distances / periodicity

● Capture multiple relationships

● Easy to parallelize -- don’t need sequential processing.

The Transformer: Motivation

Introducing the Transformer

Introducing the Transformer

Encoder-Decoder (Simpler Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

Encoder-Decoder (Simpler Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simpler Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simpler Representation)

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Softmax

Language 1: (e.g. Chinese)

Language 2: (e.g. English)

Encoder-Decoder

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

Kayla kicked the ball.

The ball was kicked by kayla.

Softmax

Encoder-Decoder

Challenge:

● Long distance dependency when translating:

<go> y(0) y(1) y(2) ….

 y(0) y(1) y(2) y(3) y(4)

A lot of responsibility put fixed-size hidden
state passed from encoder to decoderKayla kicked the ball.

The ball was kicked by kayla.

Softmax

Encoder

Encoder: Input Embedding

Input Embedding

Original Sentence

Tokenization

Input IDs
(embedding lookup: position in the vocab -
FIXED)

Embeddings
(vector of size dmodel= 512 or 1024 or …
LEARNED)

Encoder: Positional Encoding

Positional Encoding

Original Sentence
(tokens)

Embeddings
(vector of size dmodel= 512 or 1024 or …
Learned)

Positional Embedding
(vector of size dmodel= 512 or 1024 or …
Can be Learned or FIxed)

Positional Encoding

Encoder: Multi-Head Attention

…

…

…

…

The Transformer's Heart: Self-Attention

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

… …

The Transformer's Heart: Self-Attention

yi-1 yi yi+1 yi+2

hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2I'm feeling very elated.

yi-1 yi yi+1 yi+2

Attend to all other words in
the sequence

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

A weighted combination of
other words' vectors.

I'm feeling very elated.

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

The Transformer's Heart: Self-Attention

wi-1 wi wi+1 wi+2 ….

Output

α

𝜓

h
hi-1 hi hi+1
hi+2

yi-1 yi yi+1 yi+2

I'm feeling very elated.

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

The Transformer's Heart: Self-Attention

Output

α

𝜓

h
hi-1 hi hi+1
hi+2wi-1 wi wi+1 wi+2

yi-1 yi yi+1 yi+2

X X X X

+

dot product
dp dp dp

scaling
parameter

(qkt) σ(q,k)

The Transformer's Heart: Self-Attention

Notations for Self-Attention (Matrix multiplication, Dot
Product, Sequence length (s), embedding dimensions)

Input matrix: [s, dmodel]

Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

The Transformer: Beyond Self-Attention

Solution: Multi-head attention

The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

Self-Attention: Weights

Multi-Headed Attention

Multi-Headed Attention

Linear layer:
WTX

One set of weights for
each of K, Q, and V

The Transformer: Multi-headed Attention

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of K, Q,
and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of K, Q,
and V

Self-Attention in PyTorch

import nn.functional as f
class SelfAttention(nn.Module):

def __init__(self, h_dim:int):
self.Q = nn.Linear(h_dim, h_dim) #1 head
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):
v = self.V(hidden_states)
k = self.K(hidden_states)
q = self.Q(hidden_states)
attn_scores = torch.matmul(q, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

ktq(q,k) (qkt) σ

Linear layer:
WTX

One set of weights
for each of for K,
Q, and V

Decoder

Decoder: Cross Attention

Decoder: Masked Multi-Head Attention

Masked Multi-Head Attention

Training

I love hiking. [English]

Adoro le escursioni. [Italian]

Training

My life is a great messsentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Transformer Language Models: Uses multiple layers of a transformer

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

Auto-encoder (MLM):
● Connections go both directions.
● Task is predict word in middle:

p(wi| …, pwi-2, wi-1, wi+1, wi+2…)
● Better for:

○ embeddings
○ fine-tuning (transfer learning)

Auto-regressor (generator):
● Connections go forward only
● Task is predict word next word:

p(wi| wi-1, wi-2, …)
● Better for:

○ generating text
○ zero-shot learning

…

…

…

…

…

…

…

…

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

scale

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

scale

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Hugging Face or AllenNLP

https://github.com/huggingface/transformers

https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/

#example for getting embeddings

from transformers import BertModel, PreTrainedTokenizerFast, pipeline

bert_tokenizer = PreTrainedTokenizerFast.from_pretrained('google-bert/bert-base-uncased')

bert_model = BertModel.from_pretrained('google-bert/bert-base-uncased')

pipe = pipeline('feature-extraction', model=bert_model, tokenizer=bert_tokenizer)

emb = pipe(text)

print(emb[0][0])

https://github.com/huggingface/transformers
https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/

Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

Large Transformer Language Model

Classifier

Assistant,
QA

Machine
Translation

Web
Search

Document
Classification

Sentiment
Analysis …

absolutamente
me gustaría ir
de excursión

(NLP System)

Language

Soni, N., Matero, M.,
Balasubramanian, N., &
Schwartz, H. (2022, May).
Human Language Modeling. In
Findings of the Association for
Computational Linguistics: ACL
2022 (pp. 622-636).

Transformers as of 2023

Bert: Attention by Layers
https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

(Vig, 2019)

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

Challenges to sequential representation learning

● Capture long-distance dependencies
Self-attention treats far away words similar to those close.

● Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

● Capture multiple relationships
Multi-headed attention enables multiple compositions.

● Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

The Transformer: Take Away

Part 3: Applying Transformer LMs

Foundational Applied

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Supervised ML
Features

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

AR

AR

AR

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

AEAR

modifies LM weights

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training CorpusNew Continued Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Large Training Corpus
Task Prompts

e.g. What topic is this about? "Last night, the
 Seawolves won the game." answer: sports

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Task Fine-Tuning

softmax for LM:

Large Training Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

optional layer(s) for task:

Task Fine-Tuning

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

AR

AR

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

modifies LM weights

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

contextual embeddings

AR

AR

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

New Corpus

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

Large Training Corpus

linear, FFN, CNN, Random Forest,
or Any ML Model

Contextual Embeddings: for Supervised ML

equivalent to task fine-tuning but with all
frozen layers

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer(s) for task:

Similarity?
classifier or regressor:

(e.g. sentiment, topic classification, etc.)

Large Training Corpus

Optional Aggregation

Contextual Embeddings: for Similarity (unsup)

equivalent to task fine-tuning but with all
frozen layers

Embedding Comparison
Embedding

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

injects history no change or history

Unsupervised ML
or Similarity

AE

Applying Transformer LMs

contextual embeddings

AR

AR

AR

modifies LM weights

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

Unsupervised ML
or Similarity

AE

contextual embeddings

AR

injects history no change or history

Applying Transformer LMs

sentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

layer k:
(used for language modeling)

RAG, Few-Shot, Zero-Shot

softmax for LM:

Large Training Corpus
Task Prompts

e.g. What topic is this about? "Last night, the
 Seawolves won the game." answer: sports

No training!
The model is frozen

Zero shot = Prompt has no examples, just
prompting directly for the task, without answer.

Few shot = Prompt has a few examples of the task
with answer, then prompting for the task without
answer.

RAG = Using other NLP techniques to retrieve
relevant information to include in the prompt
(retrieval approach can use other models).

Answer(s)

Applying Transformer LMs

Foundational Applied

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

AEAR

AEAR

AR

AE

AR

AR

AR

Supervised ML
Features

AE

modifies LM weights injects history no change or history

contextual embeddings

Unsupervised ML
or Similarity

AE

AR

AR

AR

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)

 #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Always take the most probable next word:

Problem:

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>')
=.20

def generateGreedy(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += argmax(vocabProbs)

 #word with maximum prob
if history[-1] == '</s>': return history
else: return generateGreedy(model, history)

<s>

</s>
</s>

</s>
</s>

</s>
</s>

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((path+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current max

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

def generateBeam(model, history='<s>', init_prob=1, k=4):
 frontier = [(history, init_prob)]
 max_path = []
 max_path_p = -1.0
 while path, path_p in frontier:
 if path[-1] == "</s>": #current potential end

if path_p > max_path_p:
max_path = path
map_path_p = path_p

 else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():

frontier.append((s+w, path_p*p))
 return max_path, max_path_p

Disadvantage: Focuses on the
most probable, which is the
most typical. Results in very

"average sounding" utterances.

How to use an LM for Generation

● Greedy Search
● Beam Search
● Random Walk

def generateRandWalk(model, history='<s>'):
vocabProbs = model.getNextProbs(history)
history += multinomial.draw(vocabProbs)
 #random multinomial draw by probs
if history[-1] == '</s>': return history
else: return generateRandWalk(model, history)

Task: Estimate P(wi| w1,…wi-1)
:P(masked word given history)

P(with | He ate the cake <M>) = ?

 with yummy using and by without

How to use an LM for Generation

Practical Points

● Use log probs for faster computation tracking maximums.

● Can normalize by length to not favor shorter sequences:

● Combine beam and random walk for more novelty.

Supplemental Review Material

Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Spark OverviewLinear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Computational Graph!

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square L

L = (y - 𝛽x)2

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

Spark OverviewLinear Regression as DAG

x

𝛽

MatMul Subtract

y

Square
L

L = (y - f(𝛽x))2

f: ReLU

ReLU

import torch
from torch import nn

x = torch.Tensor(input)
beta = torch.random.randn(X.shape, 1)
z = torch.matmul(x, beta)
yhat = nn.functional.relu(z)
loss = nn.MSELoss(yhat, torch.Tensor(y))

Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

Spark OverviewPyTorch Demo

https://adithya8.github.io/assets/cse545-sp23/intro_pytorch_linear_regression.txt
https://adithya8.github.io/assets/cse545-sp23/intro_nn_linear_regression.txt

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

𝛽opt = (XTX)-1XTy

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Linear Regression

Linear Regression: ŷ = 𝛽X

Objective: Learn w, such that (y - 𝛽X)2 is minimized

How do we solve for 𝛽?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating it to 0

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Linear Regression

Linear Regression: Trying to find “betas” that minimize:

Spark OverviewNumerical Gradient Approach

β* = argminβ {∑i(yi - ŷi)
2}

Linear Regression: Trying to find “betas” that minimize:

matrix multiply

Spark OverviewNumerical Gradient Approach

β* = argminβ {∑i(yi - ŷi)
2}

ŷi = Xiβ

Linear Regression: Trying to find “betas” that minimize:

Thus:

Spark OverviewNumerical Gradient Approach

matrix multiply

ŷi = Xiβ

β* = argminβ {∑i(yi - ŷi)
2}

β* = argminβ {∑i(yi - Xiβ)2}

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark OverviewNumerical Gradient Approach

matrix multiply

ŷi = Xiβ

β* = argminβ {∑i(yi - ŷi)
2}

β* = argminβ {∑i(yi - Xiβ)2}

βnew = βold - 𝞪 * grad

Linear Regression: Trying to find “betas” that minimize:

Thus:

How to update?

Spark OverviewNumerical Gradient Approach

matrix multiply

ŷi = Xiβ

β* = argminβ {∑i(yi - ŷi)
2}

β* = argminβ {∑i(yi - Xiβ)2}

βnew = βold - 𝞪 * grad

𝞪: Learning Rate

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

Spark OverviewNumerical Gradient Approach

βnew = βold - 𝞪 * grad

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

βnew = βold - 𝞪 * grad

Linear Regression: Trying to find “betas” that minimize:

Gradient Descent:

But there are other gradient descent based optimization methods which are better*

Spark OverviewNumerical Gradient Approach

Animation: Alec Radford

βnew = βold - 𝞪 * grad

simpler version

Foundational Change
(modifies the LM weights)

Applied
(no change to LM)

Pretraining

Instruction Tuning

Fine-Tuning the LM
(continued pretraining)

Task Fine-Tuning

Retrieval-Augmented
Generation

Zero-Shot Learning
/ Direct Chat

Few-Shot Learning

Embeddings

My life is a great joysentence (sequence) input:

…

layer 0:
(input: word-type embeddings)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with

context)

(Kjell, Kjell, and Schwartz, 2023)

layer k:
(used for language modeling)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

Pre-training; Fine-tuning the LM; Instruction Tuning

(multiple layers: e.g. 6, 12, or 24)

BERT: Pre-training; Fine-tuning

12 or 24 layers

BERT: Pre-training -> Task Fine-tuning

12 or 24 layers

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

BERT: Pre-training -> LM Fine-tuning

12 or 24 layers

New Corpus

Auto-Encoding

Auto-Regressive

AE AR

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

Auto-Encoding

Auto-Regressive

