Transformer Language
Models

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

RoBERTA

_

Language Models
Vector Semantics
m LMs + Vectors

~logarithmic scale
GPT4

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.
. 1948

These (or similar) are
behind almost all
state-of-the-art

modern NLP systems

Language Models RoBERTA

Vector Semantics
m LMs + Vectors

_

~logarithmic scale

GPT4

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948

el Shannon: A Mathematical Theory of Communication (first digital language model)
K Jelinek et al. (IBM): Language Models for Sneech Recognition

19

Osgood: The
Measurement 2003
of Meaning
Switzer: Vector Deervyater:
Indexing by Latent
Space Models : :
Semantic Analysis
(LSA)
Bengio:
B Language Models Neural-net
B Vector Semantics based
m LMs + Vectors
embeddings

~logarithmic scale

Brown et al.: Class-based ngrai

These (or similar) are
behind almost all
state-of-the-art

ISRV WG]e modern NLP systems
2010

natural language

Mikolov: word2vec
ELMO 7018

Collobert and
Weston: A unified
architecture for
natural language BERT
processing: Deep

neural networks... GPT4

PT
____ ROBERTA

Timeline: Language Modeling and Vector Semantics

Markov: Probability that next letter would be vowel or consonant.
N Shannon: A Mathematical Theory of Communication (first digital language model)

Jelinek et al. (IBM): Language Models for Sneech Recoenition

Osgood: The Brown et al.: Class-based ngrali The§e (or similar) are
Measurement — behind almost all
f Meani Robustly Optimized state-of-the-art
of Meanin
’ BERTransformers
Deerwater: Pretraining Approch

Switzer: Vector
Space Models

vl ~ntonint

Indexing b
e llilel Generative Pretrained

(LSA) Transformers
Bengio:

' { dNQ
\Weston: A un/f/ed
tecture for

aruriguage
processing: Deep
neural networks... GPT4

B Language Models

Bidirectional Transformers
embeddlngs

m LMs + Vectors BERT

~logarithmic scale

Transformers

Vaswani, A., Shazeer, N.,

Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N, ... &
Polosukhin, I. (2017). Attention

is all you need. Advances in neural
information processing systems, 30.

Transformers
-

Self-Attention
B

Deep Learning
*
Neural Networks

e multi-headed attention

Transformers 4 e positional embeddings

e residual links
* (to be introduced Ilater)

Self-Attention
B

Deep Learning
*
Neural Networks

Part 1: Deep Learning and Masked Language Models

Adithya V Ganesan

CSES38 - Spring 2024
bit.ly/cse538-sp24-lecture?

Artificial Neural Networks

What is it?

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

What is it?

- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

Artificial Neural Networks

> : 4
What is it? r How did we do this:
- Biologically inspired computing model
- Learn patterns from the data
- Can even approximate nonlinear functions in the nature!

But, how do we model complex systems using these linear systems?

Deep Learning

But, how do we model complex systems using these linear systems?

Deep Learning

Non-linear functions + Artificial Neural Networks

Activation Functions
Z = h(t)W

Common Activation Functions
z=h W
(t)

Logistic: o(z)=1/(1+€%)

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Common Activation Functions
z=lo(t)W T 1

Logistic: o(z)=1/(1+€%)

_/ Fal

-6 —4 -2 0 2 4 6

Hyperbolic tangent: tanh(z) = 20(2z) - 1 = (**- 1)/ (e** + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Inputs Weights Net input Activation
function function

Activation Function

output _ |
by=8x,W)

(weighted sum)

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Activation Function

by =&, W)

S

£ 5
T =
= o
= =
=
T <=

“hidden layer” —=

Net input
function

Inputs ~ Weights

(skymind,

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

C)

)< 0 =8%,V)

“hidden layer” — n

X '

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

C

P

)

){ b =gh UtxV)

short hand for vector/ matrix multiply

“hidden layer” —=

.
B Eaa
—

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

Yi

F T Activation Function

I
I |

“hidden layer” — :(h){ " g(h(”)U+ V)
I

S

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

C Yi){ Yo :f(b(t)VV)
|

[2= =A T Actlvatlon Function

|
|
1] g A h
hidden layer” — : C t){ o g(h(tl)U+x(t)V)
|

Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden
layer depends on the current input as well as the activation value of the hidden layer from the

previous timestep. (Jurafsky, 2019)

Back Propagation

.

Language Modeling Vector Semantics

Markov: Probability that next letter would be vowel or consonant.

not good

o by dislike ™%

Hiat How incredibly bad .
a 1

than with

10
2

e
very good incredwly good

amazing fantastic
terrific nice

wonderful

Language Models
Vector Semantics
LMs + Vectors

good

~logarithmic scale (Li et al. ,2015; Jurafsky et al., 2019)

Shannon: A Mathematical Theory of Communication (first digital language model)

Word Vectors

To embed: convert a token (or sequence) to a vector that represents meaning.
Wittgenstein, 1945: “The meaning of a word is its use in the language’

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

\) \)
1 1

Word Vectors

Person A

How are you? [feel fine —even great!

What is going on? Earlier, I played the game
Yahtzee with my partner. 1
could not get that die to roll
a 1! Now I’'m lying on my
bed for a rest.

(Kjell, Kjell, and Schwartz, 2023)

Person B

My life is a great mess! I'm
having a very hard time being

happy.

My business partner was lying
to me. He was trying to game
the system and played me. |
think I am going to die —he left
and now I have to pay the rest
of his fine.

Objective

0.53

embed 1.5
great —p 3.21
-2.3

.76

Objective

great

embed

0.53
1.5
3.21
-2.3
.76

[N

great.a.l (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance
or importance)

great.a.3 (remarkable or out of the ordinary
in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy,
great.a.4, groovy, keen, neat, nifty, not bad,
peachy, slap-up, swell, smashing, old (very
good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

Objective
great.a.l (relatively large in size or number
or extent; larger than others of its kind)

great.a.2, outstanding (of major significance

/ or importance)
great.a.3 (remarkable or out of the ordinary
g ~ in degree or magnitude or effect)
|
\

0.53 bang-up, bully, corking, cracking, dandy,
embed 1.5 great.a.4, groovy, keen, neat, nifty, not bad,
great —> 3.21 peachy, slap-up, swell, smashing, old (very
'?-63 good)
g y capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, great.a.6,
large, heavy, with child (in an advanced
stage of pregnancy)

great.n.1 (a person who has achieved
distinction and honor in some field)

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

= 1948 , o
e Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]
: _ Deerwater: 2010
Switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models . :
Semantic Analysis ELMO
IsA 2018
(LSA) . Collobert and
Bengio: . PT
B Language Models Neural-net Weston: A unified ______ROBERTA
B Vector Semantics based architecture for

. natural language BERT
embeddings , ocessing: Deep

~logarithmic scale
neural networks... GPT4

m LMs + Vectors

Timeline: Language Modeling and Vector Semantics

1913
1948

L]
L4
L]
o

2018

Collobert and

B Language Models Weston: A unified
B Vector Semantics architecture for
m LMs + Vectors natural language

processing: Deep

~logarithmic scale
& neural networks...

e apisme il 0 cle/ing and Vector Semantics

feature 2 s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)

feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Lookup Tables (d1+d2+..dK)*n

w ~~ 11001
o ~_» DIBADE

2003

Convolution Layeg

#hidden units * (n-2) l:l H |:| H 2010
2018
Max Over Time
Shidden uits Collobert and

Weston: A unified
Optlonal Classical NN Layer(s architecture fOI’

natural language
Softmax 1 #classes [
processing: Deep

neural networks...

]n put S entence n words, K features
feature 1 (text) the cat sat on the mat
feature 2 s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)

feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

v~ ILIITN
ve ~» DOBODE

Convolution Layeg

#hidden units * (n-2)

Max Over Time

#hidden units

lodeling and Vector Semantics

POS, Chunking (Shallow
Parsing), NER, SRL, Modified
Language Modelling

s cricecLure jor
natural language
processing: Deep

neural networks...

Input Sentence n words, K features | d Io °
feature 1 (text) the cat sat on the mat O e 'ng a n d VECtOI' SemanthS
feature 2 s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)

feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

word vectors

more neural networks
(capturing context) POS, Chunking (Shallow
Parsing), NER, SRL, Modified
Language Modelling

#hidden units

s cricecLure jor
natural language

Task Probabilities processing: Deep
neural networks...

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
.. Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]
: _ Deerwater: 2010
Switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models S Analvsi
Leslzant/c nalysis 2018
(L5A) : Collobert and
Bengio: .
B Language Models Neural-net Weston: A unified ___ XLNet
M Vector Semantics based architecture for RoBERTA

. natural language
embeddings processing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
.. Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]
: _ Deerwater: 2010
Switzer: Vector Indexing by Latent Mikolov: word2vec
Space Models S Analvsi
Leslzant/c nalysis 2018
(L5A) : Collobert and
Bengio: .
B Language Models Neural-net Weston: A unified ___ XLNet
M Vector Semantics based architecture for RoBERTA

. natural language BERT
embeddings ,ocessing: Deep

~logarithmic scale
neural networks... GPT3

m LMs + Vectors

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-We

hang Kenton Lee Kristina Toutanova

Google Al Language

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional coder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional rep:
unlabeled text by jointly conditioning on both

ntations from

left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 93.2 (1.5 point absolute im-
provement) and SQUAD v2.0 Test F1 to 83.1
(5.1 point absolute improvement).

1 Introduction

Language model pre-training has been shown to
be effective for improving many natural languag
processing tasks (Dai and Le, 2015; Peters et al
2018a; Radford et al., 2018; Howard and Ruder,
2018). These include sentence-level tasks such as
natural language inference (Bowman et al., 2015;
Williams et al., 2018) and paraphrasing (Dolan
and Brockett, 2005), which aim to predict the re-
lationships between sentences by analyzing them
holistically, as well as token-level tasks such as
named entity recognition and question answering
where models are required to produce fine-grained
output at the token level (Tjong Kim Sang and
De Meulder, 2003; Rajpurkar et al., 2016).

There are two existing strategies for apply-
pre-trained language representations to down-
am tasks: feature-based and fine-tuning. The

feature-based approach, such as ELMo (Peters

et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn

representations.

general lan,

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-
right architecture, where every token can only at-
tend to previous tokens in the self-
of the Transformer (Vaswani et al
strictions are sub-optimal for sentenc
and could be harmful when applying fine-
tuning based approaches to token-level tasks such
as question answering, where it is crucial to incor-
porate context from both direction

In this paper, we improve the fine-tuning based
approaches by proposing BERT: Bidirectional
Encoder Representations from Transformers.
BERT alleviates the previously mentioned unidi-
rectionality constraint by using a “masked lan-
guage model” (MLM) pre-training objective, in-
spired by the Cloze task (Taylor, . The
masked language model randomly masks some of
the tokens from the input, and the objective is to
predict the original vocabulary id of the masked

4171

Proceedings of
Minneapolis, Minnesota, June 2 - June 7, 2019.

m LMs + Vectors

CL-HLT 2019, pages 4171-4186
52019 Association for Computational Linguistics

~logarithmic scale

Modeling and Vector Semantics

letter would be vowel or consonant.

atical Theory of Communication (first digital language model)

nek et al. (IBM): Language Models for Speech Recognition

Brown et al.: Class-based ngram models of

2003

Bengio:
Neural-net

based
embeddings

natural language

Blei et al.: [LDA Topic Modeling]

2010
Mikolov: word2vec

2018

Collobert and

Weston: A unified
architecture for
natural language
processing: Deep
neural networks

XLNet
RoBERTA

_

BERT

: GPT3

BERT Rediscovers the Classical NLP Pipeline

and Vector Semantics

'Google Research ?Brown y W e | or consonant.

pmmunication (first digital language model)

nguage Models for Speech Recognition
Abstract of the network directly, to assess whether there

. : exist localizable regions associated with distinct
ed text encoders have rapidly ad-

exte otk st SR types of linguistic decisions. Such work has pro- ass_based ngram mOdE/S Of

aiks: We foeis o one sach madel. BERT. duced evidence that deep language models can en-

and aim to quantify where linguistic informa- code a range of syntactic and semantic informa- fg tura/ /anguage

tion is captured within the network. We find tion (e.g. Shi et al., 2016; Belinkov, 2018; Ten-

that the model represents the steps of the tra- ney et al., 2019), and that more complex structures

ditional NLP pipeline in an interpretable and are represented hierarchically in the higher layers B . .
localizable way, and that the regions respon- of the model (Peters et al., 2018b; Blevins et al., | eta | . [LDA TOpIC MOde,lng]
sible for each step appear in the expected se- 2018).

quence: POS tagging, parsing, NER, semantic W . . . e 20 10
roles, then coreference. Qualitative analysis e build on this latter line of work, focusing

reveals that the model can and often does ad- on ll.lt‘ Bl‘iR'I' “'10dt‘l (DC\"“‘n etal., 2019), and use M | ko I ovV. Wordz vecC
just this pipeline dynamic revising lower- a suite of probing tasks (Tenney et al., 2019) de-

level decisions on the basis of disambiguating rived from the traditional NLP pipeline to quantify

information from higher-level representations. where specific types of linguistic information are 20 18

Collobert and

Weston: A unified
architecture for
natural language BERT
processing: Deep

neural networks... GPT3

Bengio:
Neural-net

based
embeddings

___XLNet
RoBERTA

a

Joumaﬁ'sm Q'uazwg{y

DEVOTED TO RESEARCH STUDIES IN TH

"Cloze Proce

E FIELD OF MASS COMMUNICATIONS

FALL 1953

dure": A New Tool

For Measuring Readability

BY WILSON L. TAYLOR*

Here is the first comprehensive statement of a research method
and its theory which were introduced briefly during a workshop
at the 1953 AEJ convention. Included are findings from three
pilot studies and two experiments in which “cloze procedure”
results are compared with those of two readability formulas.

Y “CLOZE PROCEDURE” IS A NEW PSY-
chological tool for measuring the effec-
tiveness of communication. The meth-
od is straightforward; the data are
easily quantifiable; the findings seem to
stand up.

At the outset, this tool was looked
on as a new approach to “readability.”
It was so used in three pilot studies and
two experiments, the main findings of
which are reported here.

*The writer is particularly obligated to Prof.
Charles E. Osgood, University of Illinois, and
Melvin R. Marks, Personnel Research Section,
A.G.0., Department of the Army, for instigating
and assisting in the series of efforts that yielded
the notion of ‘“cloze procedure.” Both are ex-
perimental psychologists. Among others who have
advised, encouraged or otherwise aided are these
of the University of Illinois: Prof. Lee J. Cron-
bach, educational psychologist and statisticlan;
Dean Wilbur Schramm, Division of Communica-
tions; Prof. Charles E. Swanson, Institute of
Communications Research, and George R. Klare,
psychologist, both of whom have authored arti-
cles on readability; and several journalism teach-
ers who lent their classes. Kalmer E. Stordahl
and Clifford M. Christensen, until recently. re-
search assoclates of the Institute, also contributed.

415

First, the results of the new method
were repeatedly shown to conform with
the results of the Flesch and Dale-Chall
devices for estimating: readability. Then
the scope broadened, and cloze proce-
dure was pitted against those standard
formulas.

If future research substantiates the
results so far, this tool seems likely to
have a variety of applications, both
theoretical and practical, in other fields
involving communication functions.

THE “CLOZE UNIT”

At the heart of the procedure is a
functional unit of measurement tenta-
tively dubbed a “cloze.” It is pro-
nounced Jike the verb “close” and is de-
rived from “closure.” The last term is
one gestalt psychology applies to the
human tendency to complete a familiar
but not-quite-finished pattern—to “see”
a broken circle as a whole one, for ex-
ample, by mentally closing up the gaps.

embeddings

—

ng and Vector Semantics

e vowel or consonant.

pf Communication (first digital language model)

): Language Models for Speech Recognition

natural language

l.: Class-based ngram models of

Blei et al.: [LDA Topic Modeling]

2010

Mikolov: word2vec

Collobert and

Weston: A unified

architecture for
natural language
processing: Deep

neural networks...

2018

BERT

XLNet

_

RoBERTA

GPT3

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948 , .
e Shannon: A Mathematical Theory of Communication (first digital language model)
K 19 Jelinek et al. (IBM): Language Models for Speech Recognition
Osgood: The Brown et al.: Class-based ngram models of
Measurement 2003 natural language
of Meaning
Blei et al.: [LDA Topic Modeling]

Deerwater: 2010
Indexing by Latent

Semantic Analysis

Switzer: Vector
Space Models

Mikolov: word2vec
ELMO 7018

L
(LSA) Bengio: Collobert and
M Language Models Neural-.net Weston: A unified . XLNet
B Vector Semantics based architecture for RoBERTA

. natural language
embeddings , ,cessing: Deep
~logarithmic scale

neural networks... GPT3

m LMs + Vectors

Masked
Language Modeling

Task: Estimate P(w,| w ,..w, ,w, ...w)

:P(masked word given history)
P(with | He ate the cake <M > the fork) = ?

Masked
Language Modeling

Task: Estimate P(w,| w ,...w, w._)

w' [N N)
1-1° 1+1 n

:P(masked word given history)
P(with | He ate the cake <M > the fork) = ?

with yummy using and by without

Task: Estimate P(w,| w ,..w, ,w, ...w)

:P(masked word given history)
Masked P(with | He ate the cake <M> the fork) = ?

Language Modeling

with yummy using and by without

Task: Estimate P(w,| w ,..w, ,w, ...w)

:P(masked word given history)
Masked P(with | He ate the cake <M> the fork) = ?

Language Modeling

Sequence Neural What is the masked
Usie, b, g, @rltey ARl ' Network gl \ord in the sequence?

the, fork)

with yummy using and by without

Masked Language Modelling with DNN

I3 £3 3 B3 £3 03 B3

Masked Language Modelling with DNN

Masked Language Modelling with DNN

P(<MASK>| context)

Masked Language Modelling with DNN

P(<MASK>| context)

with yummy using and by without

Masked Language Modelling with ANN

The final layer produces a
<MASK> distrbutor

? over the vocabulary,
representing the likely

words to fill in the

MASK-ed token

Masked Language Modelling with DNN

The final layer produces a
SOFTMAX
| sormax IS Hanainlinle
? over the vocabulary,
representing the likely

words to fill in the
MASK-ed token

Masked Language Modelling with DNN

P(<MASK>| context)

Masked Language Modelling with DNN

1 Can't handle order

? 2. Can’t handle variable
length sequences

3. Each parameter to

specific to the input

feature (token)

Recurrent Neural Network

ULETHULE J[&Iﬂm J[mﬂfJﬂJ
e

(. Janet) (will)(C_ _back) C(the) (bill)

Example: Forward Pass

x —p — <

(Geron, 2017)

deflne forward pass graph:

(0) ~

or i in range(1l, len(x)):
h(n = g(U hﬁ:” + W xﬁj) #update hidden state
Yy = f(V hﬁ)) #update output

#
h
£

Example: Forward Pass

x —»| |—»«<

deflne forward pass graph:

(0) ~

or i in range(1l, len(x)):
h(n = tanh(matmul(U,hU:D)+ matmul(w,xﬁ))) #update hidden state
Yy = softmax(matmul(V, h“))) #update output

#
h
£

Masked Language Modelling with Recurrent
Network

P(<MASK>| context)

Vanishing/exploding gradients (Computational graph)

GRU and LSTM cells solve.

RNN Limitation:
Losing Track of Long Distance Dependencies

RN

The horse which was raced past the barn tripped .

[ﬂm][ilm]@lm L ds][als][iﬂm]
P

RNN: Limitation: Not parallelizable

&LJ[J&J

N

p\z

lﬂﬂﬂﬂ

4

)

Language modeling
with an RNN

Next Lecture

- Deep dive into Self Attention (Vaswani et al., 2017)
- Masked Language Modelling using Transformers (Devlin et al., 2019)

Part 2: Transformer and Self-attention

Nikita Soni

nisoni@cs.stonybrook.edu

CSES38 - Spring 2024

Recap: RNN Limitations

e Difficult to capture long-distance dependencies
e Not parallelizable -- need sequential processing.
o Slow computation for long sequences

e \Vanishing or exploding gradients

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

1948

el Shannon: A Mathematical Theory of Communication (first digital language model)
K Jelinek et al. (IBM): Language Models for Sneech Recognition

19

Osgood: The
Measurement 2003
of Meaning
Switzer: Vector Deervyater:
Indexing by Latent
Space Models : :
Semantic Analysis
(LSA)
Bengio:
B Language Models Neural-net
B Vector Semantics based
m LMs + Vectors
embeddings

~logarithmic scale

Brown et al.: Class-based ngrai

These (or similar) are
behind almost all
state-of-the-art

ISRV WG]e modern NLP systems
2010

natural language

Mikolov: word2vec
ELMO 7018

Collobert and
Weston: A unified
architecture for
natural language BERT
processing: Deep

neural networks... GPT4

PT
____ ROBERTA

Timeline: Language Modeling and Vector Semantics

Markov: Probability that next letter would be vowel or consonant.
N Shannon: A Mathematical Theory of Communication (first digital language model)

Jelinek et al. (IBM): Language Models for Sneech Recoenition

Osgood: The Brown et al.: Class-based ngrali The§e (or similar) are
Measurement — behind almost all
f Meani Robustly Optimized state-of-the-art
of Meanin
’ BERTransformers
Deerwater: Pretraining Approch

Switzer: Vector
Space Models

vl ~ntonint

Indexing b
e llilel Generative Pretrained

(LSA) Transformers
Bengio:

' { dNQ
\Weston: A un/f/ed
tecture for

aruriguage
processing: Deep
neural networks... GPT4

B Language Models

Bidirectional Transformers
embeddlngs

m LMs + Vectors BERT

~logarithmic scale

The Transformer: Motivation

Capture long-distance dependencies
Preserving sequential distances / periodicity
Capture multiple relationships

Easy to parallelize -- don’t need sequential processing.

Introducing the Transformer

Output
Probabilities

Add & Norm

Ashish Vaswani® Noam Shazeer” Niki Parmar® Jakob Uszkoreit™ F
Google Brain Google Brain Google Research Google Research Forward

avaswani@google.com noam@google.com nikip@google.com usz@google.com
| Add & Norm z

Llion Jones™ Aidan N. Gomez* | FLukasz Kaiser” ~—{_Add & Norm) Mult-Hoad
Google Research University of Toronto Google Brain Feed Attenti
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com Forward 7 e}n i)

Attention Is All You Need

g AT \
Illia Polosukhin Add & Norm

illia.polosukhin@gmail.com ,—>| Add & Norm |
Masked

Multi-Head Multi-Head
Attention Attention

Abstract 1 7 1 7

~— _ _J)

The dominant sequence transduction models are based on complex recurrent or \.
convolutional neural networks that include an encoder and a decoder. The best Paositional g

») -
performing models also connect the encoder and decoder through an attention > @ j Oélrtlo,”c}l
mechanism. We propose a new simple network architecture, the Transformer, Encoding
based solely on attention mechanisms, dispensing with recurrence and convolutions Input Output
entirely. Experiments on two machine translation tasks show these models to Embedding Embedding
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English- t T
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, o S o
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after (shifted right)
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. Figure 1: The Transformer - model architecture.

Encoding

Inputs Outputs

Add & Norm
Feed
Forward

Add & Norm
Multi-Head
Attention

Paositional e

Encoding
Input
Embedding

Inputs

Introducing the Transformer

Probabilities

Linear
Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

A‘ Positional

D t Encoding
Qutput

Embedding

Outputs
{shifted right)

Figure 1: The Transformer - model architecture.

Encoder-Decoder (Simpler Representation)

(o) Y Y2) Ve3) Vg
A A A A %
A— A— A —M— AH— AH— AH— A M— A~
é (19 f f f - f
(x5 <§0> Yo Xa) Vi)

Encoder-Decoder (Simpler Representation)

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simpler Representation)

o4

Embeddmg Iookup

essentially a language model conditioned on
the final state from the encoder.

Encoder-Decoder (Simpler Representation)

Language 2: (e.g. English)

(o) Y Y2) Ve3) Vg
A A A A A
A— A— A —M— AH— AH— AH— A M— A~
&S & & . w
(x5 <§0> Xw) Xa) Vi)
| |

Embedding lookup

Language 1: (e.g. Chinese)

Encoder-Decoder

Challenge: The ball was kicked by kayla.

e Long distance dependency when translating:

Y10 Y Y)ﬂ@ (4
A A A

A—»A—»A—-»’A,‘FA—/»A—>A—>A—
f £t

£ % f f
[@ @ <89~ Y Yo V)

Kayla kicked the ball.

Encoder-Decoder

Challenge: The ball was kicked by kayla.

e Long distance dependency when translating:

Y10 Y Y ,‘ﬂ@ (4
A A

A
‘Is _— : : : —
Y

A lot of responsibility put fixed-size hidden
state passed from encoder to decoder

Kayla kicked the b

Encoder

Add & Norm
Feed
Forward

Add & Norm
Multi-Head
Attention

Input
Embedding

Inputs

Encoder: Input Embedding

Add & Norm
Feed
Forward

Add & Norm
Multi-Head
Attention

b J

Input
Embedding

Inputs

Input Embedding

Original Sentence
Tokenization

Input IDs
(embedding lookup: position in the vocab -
FIXED)

Embeddings
(vector of size d
LEARNED)

=512 0r 1024 or ...

model

Encoder: Positional Encoding

Positional Encoding

Original Sentence
(tokens)

Embeddings
(vector of size d
Learned)

=512 0r 1024 or ...

model

Positional Embedding
(vector of sized . =512 0r 1024 or ...
Can be Learned or Fixed)

Positional Encoding

PE (o5 2i) = sin(pos/10000%/)

PE = cos(pos/10000%/ dme)

(pos,2i+1)

Encoder: Multi-Head Attention

Self-Attention

The Transformer's Heart

The Transformer's Heart: Self-Attention

The Transformer's Heart: Self-Attention

g
T
Output
o
Attend to all other words in
, the sequence

The Transformer's Heart: Self-Attention

yi
T
Output
o
Attend to all other words in
, the sequence
b
» b b,

1.
T T T T
I'm feeling very elated.

The Transformer's Heart: Self-Attention

yi
T " . .
Output A weighted f:omblnatlon of
other words' vectors.
oL
Y
b
hi‘l hl' hz’+1

| 4 4 4

I'm feeling very elated.

The Transformer's Heart: Self-Attention

The Transformer's Heart: Self-Attention

b, b, b,
|) P\ "

I'm feeling very elated.

The Transformer's Heart: Self-Attention

The Transformer's Heart: Self-Attention

scaling
parameter
Output Vap (k) = (qk')c
oL
Y

Notations for Self-Attention (Matrix multiplication, Dot
Product, Sequence length (s), embedding dimensions)

Input matrix: [s, d__ I

Self-Attention

Attention(Q, K, V') = softmax(

The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

| kicked the ball

Who Did what? To whom?

. .

| kicked the ball

The Transformer: Beyond Self-Attention

Limitation (thus far): Can’t capture multiple types of dependencies between words.

Solution: Multi-head attention

| kicked the ball

®@ OO0

To whom?

ball

Self-Attention: Weights

Attention(Q, K. V') = softmax(

Multi-Headed Attention

MultiHead(Q, K, V') = Concat(heady, ..., head;,)W ©

where head; = Att(_‘ntiun(QU'I.Q. KWX vw))

Multi-Headed Attention

where head; = Attvntiun(QU'I.Q. 1(”}1" ” 'U}"i)

MultiHead(Q, K, V') = Concat(heady, ..., head;,)W ©

Linear layer:
WTX

One set of weights for
each of K, Q, and V

The Transformer: Multi-headed Attention

: Scaled Dot-Product

Attention e
Linear

Self-Attention in PyTorch

I import nn.functional as f

I class SelfAttention(nn.Module):

def init_ (self, h_dim:int):
nn.Linear(h_dim, h _dim) #1 head

self.Q = 'l.ii”dp (q)k) — (qkt)a
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)

Linear layer:

v = self.V(hidden_states)
k = self.K(hidden_states)
g = self.Q(hidden_states)
attn_scores = torch.matmul(qg, k.T)
attn_probs = f.Softmax(attn_scores)

One set of weights
for each of K, Q,
and V

context = torch.matmul(attn_probs, v)

|
|
|
|
I
I
|
|
|
|
def forward(hidden states:torch.Tensor): | wix
|
I
I
|
|
|
|
|
|
return context I

Self-Attention in PyTorch

I import nn.functional as f
I class SelfAttention(nn.Module):

def _init_ (self, h dim:int):
nn.Linear(h_dim, h_dim) #1 head

self.Q
self.K = nn.Linear(h_dim, h_dim)
self.V = nn.Linear(h_dim, h_dim)
self.dropout = nn.dropout(p=0.1)

def forward(hidden_states:torch.Tensor):

v = self.V(hidden_states)

k = self.K(hidden_states)

g = self.Q(hidden_states)

attn_scores = torch.matmul(qg, k.T)
attn_probs = f.Softmax(attn_scores)
attn_probs = self.dropout(attn_probs)
context = torch.matmul(attn_probs, v)
return context

"l.*"',"’dp (k) = (qkt)U

Linear layer:
wix

One set of weights
for each of K, Q,
and V

Self-Attention in PyTorch

I import nn.functional as f '
I class SelfAttention(nn.Module):

def forward(h
v = self.
k = self.

q = self. L) | @N of for K,

- a) Standard Neural Net
attn_prob (»)

attn:probs = self.dropout(aztn_probs)
context = torch.matmul(attn_probs, v)
return context

Decoder

Outy
Probabil

Add & Norm

Multi-Head
Attention

Add & Norm
Masked
Multi-Head
Attention

Positional
9 e -ncoding
Encoding

Output
Embedding

Outputs
(shifted right)

Decoder: Cross Attention

OQutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward

Multi-Head
Attention

Masked
Multi-Head
Attention

Positional
Encoding

Output
Embedding

Outputs
ifted right)

Decoder: Masked Multi-Head Attention

Outy
Probabilities

Softmax

Linear
Add & Norm
Feed
Forward

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Positional
Encoding

Output
Embedding

(shifted right)

Masked Multi-Head Attention

Training

[English] | love hiking.

[Italian] Adoro le escursioni.

d right)

Figure 1: The Transformer - model architecture.

Training

Pt
Pr)

Nl

[(Add & Norm]
tion I
(Add & Norm]

M: d
Iti-Head
Attention

Transformer Language Models: Uses multiple layers of a transformer

layer k:
(used for language modeling)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer 0:
(input: word-type embeddings)

sentence (sequence) input:

(Kjell, Kjell, and Schwartz, 2023)

Auto-encoder (MLM):

e Connections go both directions.
e Task is predict word in middle:
p(wil ..., pwi-2, wi-1, wi+1, wi+2...)
e Better for:
o embeddings
o fine-tuning (transfer learning)

Auto-encoder (MLM):

e Connections go both directions.
e Task is predict word in middle:
p(wil ..., pwi-2, wi-1, wi+1, wi+2...)
e Better for:
o embeddings
o fine-tuning (transfer learning)

Auto-regressor (generator):

e Connections go forward only

e Task is predict word next word:
p(wil| wi-1, wi-2, ...)

e Better for:
O generating text
o zero-shot learning

Auto-encoder (MLM):

e Connections go both directions.
e Task is predict word in middle:
p(wil ..., pwi-2, wi-1, wi+1, wi+2...)
e Better for:
o embeddings
o fine-tuning (transfer learning)

Auto-regressor (generator):

e Connections go forward only

e Task is predict word next word:
p(wil| wi-1, wi-2, ...)

e Better for:
O generating text
o zero-shot learning

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

&

positional
encoding

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

positional

For K, Q, and V, these can
calculated on a per-head b
can be lumped into as few
operation for all 3 matrices

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

Input embeddings [:
(nxd) S#If Attention Mechanism

} softmax

positional
encoding

For K, Q, and V, these can be
calculated on a per-head basis or it
can be lumped into as few as 1
operation for all 3 matrices

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

(n x [ah*heads]

Input embeddings [:
(nxd) S#If Attention Mechanism

full
' softmax y

(ah*heads
xd)

positional
encoding

For K, Q, and V, these can be
calculated on a per-head basis or it
can be lumped into as few as 1
operation for all 3 matrices

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

(nxn)

Input embeddings L :
(nxd) S#If Attention Mechanism

[\ full
¢ softmax itk

(ah*heads
xd)

positional
encoding

For K, Q, and V, these can be : A _
: y Since ah*heads = d, t
calculated on a per-head basis or it :
FC layer doesn't chan

can be lumped into as few as 1
operation for all 3 matrices

dimensions

(n x ah) x heads

(nxd)

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

(n x fc)

l‘t,' (n x ah) (n x [ah*heads])
T l‘j“‘ ,"'L\ “‘.
\ I .
Input embeddings !] ; ¥
(nxd) | Mlecharjom |
f
> ully
: @L conn.
1 mn;h;ws
positional
— encoding

(nxd)

fully

conn.
f
(d x fc) GaLii (fc x d)

\[fally |/
conn.

For K, Q, and V, these can be

calculated on a per-head basis or it
can be lumped into as few as 1
operation for all 3 matrices

operations looking across tokens

Since ah*heads = d, this

FC layer doesn't change
dimensions

Detailed Overview of (HuggingFace) Transformer Matrices and Computation

(d x ah) (nxn) RoBERTa base:

A n <= 320
(n x ah) x heads [\ |(nxah) | | (nx[ah*heads]) | | (nxd) (n x fc) (nx d) dh= 722
[\ : , T . ah =
(n x d) a \ A A fc = 3072
’ [heads = 12
Input embeddings ' 1] ‘ | J ¥ 3 | “ Output embeddings
(n x d) If Attention Mechanism (n x d)
: ully \| fully | \| fully |/ i
| @L conn. conn. @ conn. :
(ah*heads
C’) 1 @xfo) | o | exd)
positional
e encoding E—
L] operations looking across tokens

For K, Q, and V, these can be
calculated on a per-head basis or it
can be lumped into as few as 1
operation for all 3 matrices

Since ah*heads = d, this
FC layer doesn't change
dimensions

Hugging Face or AllenNLP

https://qithub.com/hugqgingface/transformers

https://docs.allennip.org/v2.10.1/api/modules/transformer/transformer module/

https://github.com/huggingface/transformers
https://docs.allennlp.org/v2.10.1/api/modules/transformer/transformer_module/

Transformer (as of 2017)

‘“WMT-2014" Data Set. BLEU scores:

EN-DE EN-FR
GNMT (orig) 24.6 39.9
ConvSeg2Seq 25.2 40.5
Transformer® 28.4 41.8

Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

https://super.gluebenchmark.com/leaderboard/

ChatGPT “

ChatGPT is an artificial intelligence chatbot
developed by OpenAl and launched in
November 2022. It is built on top of OpenAl's
GPT-3.5 and GPT-4 families of large
language models and has been fine-tu...

https://gluebenchmark.com/leaderboard
https://super.gluebenchmark.com/leaderboard/

Transformers as of 2023

Machine
Translation

absolutamente
me gustaria ir
de excursion

AT

Soni, N., Matero, M.,
Balasubramanian, N., &
Schwartz, H. (2022, May).
Human Language Modeling. In
Findings of the Association for
Computational Linguistics: ACL
2022 (pp. 622-636).

L

Web Sentiment Document
Search Analysis Classification

arge Transformer Languaage Mode

Language

Assistant,
QA

(NLP System)

Microsoft

Research

Bert: Attention by Layers

https://colab.research.gooale.com/drive/1viOJ11hdujVifH857hvYKIdKPTD9Kid8

Layer: [2 v |Attention: |

H BENE § 'l

[CLS]
[
went
to
the
store

[SEP]
at

the
store

[

bought
fresh
straw
#Eberries

[SEPj

(Vig, 2019)

went
fo
the
store

[SEP]
at

the
store

[

bought
fresh
straw
#iberries

[SEP]

https://colab.research.google.com/drive/1vlOJ1lhdujVjfH857hvYKIdKPTD9Kid8

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

B Single generic models == == 2018 Task-specific-SOTA == Human performance
90 f
85
80
75
70

BILSTM+ELMo GPT BERT BERT Big BigBird

https://rajpurkar.qithub.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

The Transformer: Take Away

Challenges to sequential representation learning

e Capture long-distance dependencies
Self-attention treats far away words similar to those close.

® Preserving sequential distances / periodicity
Positional embeddings encode distances/periods.

e Capture multiple relationships
Multi-headed attention enables multiple compositions.

e Easy to parallelize -- don’t need sequential processing.
Entire layer can be computed at once. Is only matrix
multiplications + standardizing.

Part 3: Applying Transformer LMs

Foundational Applied

—

Applying Transformer LMs Unsupervised ML

or Similarity
Supervised ML |
Features

Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
/ Direct Chat

Fine-Tuning the LM Retrieval-Augmented
(continued pretraining) Generation

Instruction Tuning Few-Shot Learning

Applying Transformer LMs Unsupervised ML
or Similarity ’t‘j” e
T ISuperwsed ML |
”i"ﬁ“ Features

Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
o i kh-iﬂ / Direct Chat
AE RE8
Fine-Tuning the LM RetrlevaI—Augmented i
(continued pretraining) Generation
/! N | }H{ /! N |
AE
Instruction Tuning Few-Shot Learning

| - |

/ﬂIEI /ﬂrﬁ

Applying Transformer LMs Unsupervised ML
or Similarity i

Supervised ML |
== Features :

AE

Foundational Applied

no change or history

Pretraining Task Fine-Tuning Zero-Shot Learning
4 T i mn / Direct Chat
AR AE AE BEE
iER

Fine-Tuning the LM Retrieval-Augmented
(continued pretraining) Generation

| ;] i ’Hi | I |
iER

AR
Instruction Tuning Few-Shot Learning

T rri

AR

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

layer k:
(used for language modeling)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input: Large Training Corpus

(Kjell, Kjell, and Schwartz, 2023)

Pretraining; FTing the LM; Instruction Tuning

softmax for LM:

layer k:

(used for language modeling)

layer k-1:

(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input:

New Continued Training Corpus

Pretraining; FTing the LM; Instruction Tuning
softmax for LM:

layer k:
(used for language modeling)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input: Task Prompts

e.g. What topic is this about? "Last night, the
Seawolves won the game." answer: sports

Applying Transformer LMs Unsupervised ML
or Similarity i

Supervised ML |
== Features :

AE
Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
A e separ / Direct Chat
AR AE

AE BEE
T 0t

Fine-Tuning the LM Retrieval-Augmented
(continued pretraining) Generation

| ;] i ’Hi | I |
iER

AR
Instruction Tuning Few-Shot Learning

T rri

AR

Applying Transformer LMs Unsupervised ML
or Similarity i

Supervised ML |
== Features :

AE
Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
e e = / Direct Chat
AE AE BB
Fine-Tuning the LM Retrieval-Augmented .
(continued pretraining) Generation
e T i
AE

Instruction Tuning Few-Shot Learning

] | N |
[] [- |

Task Fine-Tuning

(used for languageTmeaeing)
layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input: Large Training Corpus

(Kjell, Kjell, and Schwartz, 2023)

Task Fine-Tuning

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

optional layer(s) for task:

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input: Large Training Corpus

(Kjell, Kjell, and Schwartz, 2023)

Applying Transformer LMs Unsupervised ML
or Similarity “Frr Tii

Supervised ML | -
i =M Features ;:

R AE
Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
e e = / Direct Chat
AE AE BB
Fine-Tuning the LM Retrieval-Augmented .
(continued pretraining) Generation
e T i
AE

Instruction Tuning Few-Shot Learning

" | N |
i E &8 [- |

Applying Transformer LMs unsupervisedmL =~
or Similarity i "?Aij"
Supervised ML | -

AR AE
Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
e sefer / Direct Chat

AE AE REd

Fine-Tuning the Retrieval-Augmented ce

(continued pretraini Generation

e T Fri
AE

Instruction Tuning Few-Shot Learning

" | N |
i E &8 [- |

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

softmax for LM:

layer k:
(used for language modeling)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input

(Kjell, Kjell, and Schwartz, 2023)

Contextual Embeddings: for Supervised ML; for Similarity (unsup)

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

sentence (sequence) input

(Kjell, Kjell, and Schwartz, 2023)

Contextual Embeddings: for Supervised ML
- =

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

- - -

linear, FFN, CNN, Random Forest,
layer(s) for task: or Any ML Model

I R T

v L LI
(taken as contextual embedding) - ___B___ - ____ .

layers 1 to k-2:
(compose embeddings with
context)

-

equivalent to task fine-tuning but with all
frozen layers

layer O:
(input: word-type embeddings)

| R T
sentence (sequence) input: Large Training Corpus

(Kjell, Kjell, and Schwartz, 2023)

Contextual Embeddings: for Similarity (unsup)

classifier or regressor:
(e.g. sentiment, topic classification, etc.)

layer(s) for task:

layer k-1:
(taken as contextual embedding)

layers 1 to k-2:
(compose embeddings with
context)

layer O:
(input: word-type embeddings)

CoFlrlson

Embedding

.-

Optlonal Aggregatlon

e

equivalent to task fine-tuning but with all
frozen layers

sentence (sequence) input: Large Training Corpus

(Kjell, Kjell, and Schwartz, 2023)

Applying Transformer LMs unsupervisedmL =~
or Similarity i "?Aij"
Supervised ML | -

AR AE
Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
e sefer / Direct Chat

AE AE REd

Fine-Tuning the Retrieval-Augmented ce

(continued pretraini Generation

e T Fri
AE

Instruction Tuning Few-Shot Learning

" | N |
i E &8 [- |

Applying Transformer LMs Unsupervised ML
or Similarity “Frr Tii

Supervised ML | -
i =M Features ;

AE

Foundational

Pretraining Task Fine-Tuning Zero-Shot Learning
e st / Direct Chat
AE AE BB i
Fine-Tuning the Retrieval-Augmented aa
(continued pretraini Generation
Fre e e
AE AR
Instruction Tuning Few-Shot Learning
[|
i rr

AR

RAG, Few-Shot, Zero-Shot Answer(s)

softmax for LM:

layer k:
(used for language modeling)

ero shot = Prompt has no examples, just
nomptingdirectly for the task, without answer:

T N

(taken as contextual embedding)

with answer, then prompting for the-task-without
answer.

layers 1 to k-2:
(compose embeddings with

context)

|
1
1
|
|
1
1
|
|
1
1
|
layer k-1: i
1
|
|
1
1
|
|
1
! RAG ="Using-other NLP techniques to-retrieve
: relevant infermation to include in the prompt

layer O:
(input: word-type embeddings)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
Few:shot = Prompt has.a few examples.of the task |
I
I
I
I
I
I
I
I
I
I
I
I
]

sentence (sequence) input: Task Prompts
e.g. What topic is this about? "Last night, the

Seawolves won the game." answer: sports

Applying Transformer LMs Unsupervised ML
or Similarity ’t‘j” e
T ISuperwsed ML |
”i"ﬁ“ Features

Foundational Applied

Pretraining Task Fine-Tuning Zero-Shot Learning
o i kh-iﬂ / Direct Chat
AE RE8
Fine-Tuning the LM RetrlevaI—Augmented i
(continued pretraining) Generation
/! N | }H{ /! N |
AE
Instruction Tuning Few-Shot Learning

| - |

/ﬂIEI /ﬂrﬁ

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Search

e Random Walk Wy = argmax,, -y P(W|W<t)

How to use an LM for Generation

e Greedy Search Always take the most probable next word:
e Beam Seargh

e Random Pty t1.ty)

Problem:

p('<s> ok ok </s>')
=.28

p('<s> yes yes </s>'

=.20 IDINCERME A search tree for generating the target string T = t1,t,... from vocabulary
V = {yes,ok,<s>}, showing the probability of generating each token from that state. Greedy
search chooses yes followed by yes, instead of the globally most probable sequence ok ok.

How to use an LM for Generation

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

log P (arrived the|x) log P (“the green witch arrived”|x)
—-77 log P (the|x) + log P(green|the x)
R + log P(witch | the, green x)
® +logP(arrived|the,green,witch,x)
/ +log P(EOS|the green,witch,arrived X)[~---. | _
log P(arrivedx) - 69 log P(arrived witch|x) -3.2 " e
=18 =-39 N\ 25 __.EOS
arrived—-2.3— O 2.1 22
P arrlved\ m
_1‘6 _1‘6 / _2-3\ s
4 log P(the gl'ccn/ -.36 39 ¢ at
=-1.6 .
BOS__ logP(thelx) _ 51—~ Witch 16— ©
=93 =99 69,,green .
.A e =% ~N -
the log P(the witcl e
\ i 2 U‘i l((lL WIICh|X) 27 51/'EOS
. — s . e 3
Y witch -.11—arrived
-1.61 3.8
-2.3
log P(y,|x) log P(y,ly;.X) log P(y3ly5,¥1.X) log P(y,|y3.¥2,¥1-X) log P(y;|y4.¥3.¥2.¥1.X)
Yi y: Ys Y4 Y5

IDTICMRRY Scoring for beam search decoding with a beam width of k = 2. We maintain the log probability
of each hypothesis in the beam by incrementally adding the logprob of generating each next token. Only the top
k paths are extended to the next step.

arrived Yo

Yo
Y1 o
— BOS ' arrived
— | aardvark
a
aardvark
BOS :
start g amveéj

aardvark

aardvark

/'—

q green

tl t2 Bés | the ‘\A’/itTCh t3

How to use an LM for Gene

e Greedy Search
e Beam Search
e Random Walk

Evaluate among
multiple sequences.

Restrict to consider
the top k (beam
width) most probable
per step.

Disadvantage: Focuses on the
most probable, which is the
ey most typical. Results in very

SRR "average sounding” utterances.
max_path = []

max_path p = -1.0
while path, path_p in frogQ”:
if path[-1] == "</s>": #current potential end
if path_p > max_path p:
max_path = path
map_path p = path p
else:
vocabProbs = model.getNextProbs(path)
nextWPs = topK(vocabProbs, k)
for w, p in nextWPs.items():
frontier.append((s+w, path p*p))
return max_path, max_path_p

How to use an LM for Generation

e Greedy Search def generateRandWalk(model, history='<s>'):

e Beam Search vocabProbs = model.getNextProbs(history)

e Random Walk history += mult1nom1al.c.jr'awgvocabPr‘obs)
#random multinomial draw by probs

if history[-1] == '</s>': return history

else: return generateRandWalk(model, history)

Task: Estimate P(w.| w ,..w,)

:P(masked word given history)
P(with | He ate the cake <M>) =? = I

with yummy using and by without

How to use an LM for Generation

Practical Points

e Use log probs for faster computation tracking maximums.
e Can normalize by length to not favor shorter sequences:
score(y) =logP(y|x) = ZlogP (vily1,-- ,X) (13.16)

e Combine beam and random walk for more novelty.

Supplemental Review Material

111 1 8 1 111 1 8 1 111
Auto- j Auio Rv!cre!swe Auto ncjng Auio D!qre!swe Auto- j
18 1 111 181 LEE T opE
Ajo i!qre!swe Auto j Ajo Ii!qre!swe Auto- j Ajo i!qre!swe
111 16 B 111 1 8 1 111
Auto—!ncj Auio-ﬂ-ecti re!sive Auto- !ncjnc Auio—li\i re!sive Auto—!ncj

1 8 1 I 11 i i I 11]
Auio Ire!swe Auto- !nco!mg Auﬁo Ire!swe Auto- tln-cogmg Auto- Iresswe

111 il 111
Auto- j Auio i!qre!swe Auto ncjng Ajo i!cre!suve Auto- j

Linear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Linear Regression as DAG

How do Machine learning/ Deep learning frameworks represent these models?

Linear Regression as DAG

- -

L =(y-Bx)

Linear Regression as DAG

-
Q00O

L = (y - f(Bx))’
f: ReLU

Linear Regression as DAG

L = (y - (Bx))*
f: ReLU

x = torch.Tensor(input)

beta = torch.random.randn(X.shape, 1)

z = torch.matmul(x, beta)

yhat = nn.functional.relu(z)

loss = nn.MSELoss(yhat, torch.Tensor(y))

(llillillll) 1lIIII!I')li

import torch
from torch import nn

PyTorch Demo

Native Linear Regression Implementation (Link)

Torch.nn Linear Regression Implementation (Link)

https://adithya8.github.io/assets/cse545-sp23/intro_pytorch_linear_regression.txt
https://adithya8.github.io/assets/cse545-sp23/intro_nn_linear_regression.txt

Linear Regression

Linear Regression: j = pX

Objective: Learn w, such that (y - BX) is minimized

Linear Regression

Linear Regression: j = pX

Objective: Learn w, such that (y - BX) is minimized

How do we solve for g?

Linear Regression

Linear Regression: j = pX
Objective: Learn w, such that (y - BX) is minimized
How do we solve for g?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating itto O

Linear Regression

Linear Regression: j = pX

Objective: Learn w, such that (y - BX) is minimized

How do we solve for g?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating itto O

B,y = (X' X)Xy

opt

Linear Regression

Linear Regression: j = pX
Objective: Learn w, such that (y - BX) is minimized

How do we solve for g?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating itto O

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Linear Regression

Initial
weight

Linear Regression: j = fX
Objective: Learn w, such that (y - BX) is minimized

How do we solve for g?

1. Analytic Gradient: Differentiate the objective, solve the system of equations by
equating itto O

2. Numerical Gradient: Start at a random point and move in the direction of
minima until optima is reached

Numerical Gradient Approach

Trying to find “betas” that minimize:

B* = argminB {Z|(y| - S‘/i)Z}

Numerical Gradient Approach

Trying to find “betas” that minimize:

B* = argminB {Z|(y| N yi)z}
matrix multiply

/

j,= XB

Numerical Gradient Approach

Trying to find “betas” that minimize:

B* = argminB {Z|(y| N yi)z}
matrix multiply

/

g =Xp Thus: "= argming {5,(y, - Xp)»

Numerical Gradient Approach

Trying to find “betas” that minimize:

B* = argminB {Z|(y| N S‘/i)Z}
matrix multiply

/

g =Xp Thus: "= argming {5,(y, - Xp)»

How to update?
Bnew = BoId -a” grad

Numerical Gradient Approach

Trying to find “betas” that minimize:

B* = argminB {Z|(y| N yi)z}
matrix multiply

/

g =Xp Thus: "= argming {5,(y, - Xp)»

How to update?

Bnew = BoId -a” grad

\ a: Learning Rate

Numerical Gradient Approach

Trying to find “betas” that minimize:

Gradient Descent: B =B_.-a*grad

Numerical Gradient Approach

Trying to find “betas” that minimize:

Gradient Descent: B =B_.-a*grad

But there are other gradient descent based optimization methods which are better*

Numerical Gradient Approach

Trying to find

Gradient Descent: B =B_.-a*grad

“betas
2

” that minimize:

——— = sgd
= momentum
nag
adagrad
adadelta
rmsprop

\
\ O\
\ \ \ \
|‘ ‘|‘ \ \
\ ! \

: l“" "’ y/ ~ oD ¥
i \\\\\\\
| p , \) ~
| \ '-. \
| \! \ }

simpler version

Foundational Change

(modifies the LM weights)

@) 0

Pretraining

Fine-Tuning the LM

(continued pretraining)

Instruction Tuning

Applied

(no change to LM)

Task Fine-Tuning

Retrieval-Augmented
Generation

@)

@)

Zero-Shot Learning
/ Direct Chat

Embeddings

Few-Shot Learning

Pretraining; FTing the LM; Instruction Tuning
softmax for LM: [}

. B I BN N
were 10000
(used for language modeling) —_ , o

fayer k-1: it | I B
(taken as contextual embedding) ’ - e ‘

layers 1 to k-2:
(compose embeddings with
context)

layer 0: I I I I I I
(input: word-type embeddings) T T T T
\Y a

sentence (sequence) input:

(Kjell, Kjell, and Schwartz, 2023)

Pre-training; Fine-tuning the LM; Instruction Tuning

[W'y w2 W’s W’s
Embedding 7y ¥ ry
to vocab + T T
softmax 3
[Classification Layer: Fully-connected layer + GELU + Norm :
3 A A A A
| o 0 Os O4 0s
r A r s A A
(")
Transformer encoder
(multiple layers: e.g. 6, 12, or 24)
— =
Embedding T T T t T
[W1 w2 ‘ W3 [MASK] W5

T] I T

W4 W2 W3 W4 Ws

BERT: Pre-training; Fine-tuning

Transformer encoder

12 or 24 layers

w1 w2 W3 [MASK] W5
[| | [|
W1 W2 W3 W4 Ws

BERT: Pre-training -> Task Fine-tuning

Embeddin Novel classifier

to vocab

Softmax (e.g. sentiment classifier; stance detector...etc..)

[Ty
Transformer encoder
12 or 24 layers
& >/
Embedding T T T T T
[W1 W2] W3 [MASK]] Ws

BERT: Pre-training -> LM Fine-tuning

[w1 w2 W3 W’s
Embedding 3 ry
to vocab + T
softmax
[Classification Layer: Fully-connected layer + GELU + Norm
A A r 3 A A
| o 0: Os 04 Os
A ’ 3 r 3 r 3 3
~
Transformer encoder
12 or 24 layers
&
'mbedding T T T T T
New C » | w W2 W3 [MASK] Ws
ew LOorpus T T T I T
W1 W2 W3 W4 Ws

111 1 8 1 111 1 8 1 111
Auto- j Auio Rv!cre!swe Auto ncjng Auio D!qre!swe Auto- j
18 1 111 181 LEE T opE
Ajo i!qre!swe Auto j Ajo Ii!qre!swe Auto- j Ajo i!qre!swe
111 16 B 111 1 8 1 111
Auto—!ncj Auio-ﬂ-ecti re!sive Auto- !ncjnc Auio—li\i re!sive Auto—!ncj

1 8 1 I 11 i i I 11]
Auio Ire!swe Auto- !nco!mg Auﬁo Ire!swe Auto- tln-cogmg Auto- Iresswe

111 il 111
Auto- j Auio i!qre!swe Auto ncjng Ajo i!cre!suve Auto- j

